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Abstract

Patent holders whose patents are essential to a standard are usually required to
license their patents under fair, reasonable, and non-discriminatory (FRAND) terms.
This requirement is often interpreted as a price cap such that royalties for the patents
do not exceed their pre-standardisation incremental values. Using a theoretical model
of innovators with interacting technologies, I consider the problem of choosing the
incentive scheme to induce welfare-maximising research investments under the con-
dition that it only uses the values created by the innovators, and analyse the prevalent
interpretation of FRAND compared to the optimal scheme. It shows that in some
cases, this incremental value rule does not lead to the efficient level of innovation
investment.
Keywords: standardisation, standard-essential patents, FRAND, innovation incentives
JEL classification: L15, O31, O34, O38

1 Introduction

Technical standards, such as Wi-Fi or LTE for wireless communication, often involve

many inventions that are protected by patents. A patented invention may be integral

to the standard such that an implementer of the standard, for example a mobile phone

manufacturer, must use it to produce a standard-compliant product. Such a patent becomes

a standard-essential patent (SEP), and the manufacturer needs to obtain a licence for the

∗ Tilburg University, Department of Economics, TILEC. Email: c.wipusanawan@tilburguniversity.edu. I am
grateful to my supervisors Florian Schuett and Bert Willems for their tremendous guidance and support.
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SEP to market their products. The number of patents involved can be huge for a complex

standard. For example, the LTE standard involves thousands of different patents (Baron

and Pohlmann 2018).

In general, a patent holder is allowed to exclude others from using the invention. This can

be detrimental to a standard, which is meant to be widely adopted. Many standard-setting

organisations (SSOs) therefore require that their members commit to license their SEPs

under fair, reasonable, and non-discriminatory (FRAND) terms.1 One problem that FRAND

licensing commitment purports to alleviate is the patent hold-up problem. The problem can

be summarised as follows. Before a standard is codified, there may be multiple technologies

that can provide similar functionalities (that is, they are substitutes), and the bargaining

power of a particular patent holder at this stage is restricted by competition. However,

once one particular technology is chosen as the standard, other technologies are no longer

viable alternatives for standard implementers. Without restrictions on licensing, the SEP

holder can capture the value of being included in the standard that is higher than its prior

underlying value among competitors (Shapiro 2001; Farrell et al. 2007).

Although FRAND licensing commitment is a common feature of SSO policies, what it

entails has not always been clear. Determination of ‘reasonable’ royalties for SEPs has been

a major contention in several legal disputes. Scholars have proposed an interpretation that

reasonable royalties should reflect the royalties in a hypothetical competition before the

standard is set, which is the incremental value over the next best alternative (Swanson and

Baumol 2005; Farrell et al. 2007).2 In the United States, this incremental value interpretation

has been endorsed by the Federal Trade Commission (2011) and accepted by courts in SEP-

related cases.3

Given that patents are meant to incentivise investment in innovation, a policy that

essentially caps the royalties for SEP holders is met with concerns that it excessively

restricts the incentives for innovators (see e.g. Geradin and Rato 2007; Sidak 2013; Siebrasse

and Cotter 2017). From the perspective of economic welfare, the pertinent question is what

1 Lemley (2002) studies the policies of forty-three SSOs in telecommunications and computer networking
industries and finds that the majority of them requires FRAND licensing.

2 In the literature, this hypothetical competition has often been called ex ante competition, since it reflects
the situation before the standard is decided. I do not use this terminology in the paper to avoid confusion,
since such competition occurs after the innovation process, which is the focus of this paper.

3 For example, the US Federal Circuit noted in Ericsson v D-Link (773 F.3d 1201 (2014)) that ‘the patentee’s
royalty must be premised on the value of the patented feature, not any value added by the standard’s
adoption of the patented technology … to ensure that the royalty award is based on the incremental
value that the patented invention adds to the product, not any value added by the standardization of that
technology’.
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the optimal innovation incentives should look like and whether the prevalent interpretation

of reasonable royalties is optimal.

In this paper, I study the incentive to innovate when there are multiple technologies

and the (incremental) value of each depends on which other technologies are available,

which is usually the case in standardisation. Technologies from different innovators can be

competing with each other, with the extreme case being that they are perfect substitutes,

or they may complement each other such that the whole is greater than the sum of its

parts. Using this framework, I consider the problem of choosing the incentive scheme to

induce research investments that maximise the expected value of the technology bundle

net of the research costs. The incentive scheme is restricted by a budget constraint that

the revenues given to innovators come from the values that they jointly create; in other

words, external subsidies are not allowed. This problem mirrors the budget-balanced

multi-product pricing problem that yields the Ramsey pricing solution. Then, I define

the competitive benchmark that represents the prevailing interpretation of FRAND, and

evaluate the benchmark compared to the optimal incentive scheme.

The key result of this paper is that competitive royalties are not necessarily optimal,

and economic welfare can sometimes be enhanced by allowing greater royalties than the

competitive level. This result relates to a conventional economic wisdom that investment

decisions are efficient if the marginal private incentive aligns with the marginal social

contribution.4 The competitive royalty that a patent holder can command, according to the

idea of hypothetical pre-standardisation competition, is restricted by the incremental value

of the technology over its best alternative. The same idea also holds true for a group of

patent holders; their combined competitive royalties are restricted by their total incremental

value over the best alternative standard that does not feature any of their inventions. If an

innovator is rewarded exactly the incremental value of their contribution, then the marginal

incentive aligns with the marginal social contribution. However, when multiple inventions

are complements, the sum of individual incremental values exceeds the joint incremental

value (Shapiro 2007). By imposing competitive royalties within a specific realised state of

innovation, it is possible that an inventor has a competing substitute that drives down its

competitive royalty (justifiably in isolation) in one realised state, but receives a competitive

royalty smaller than its incremental value in another state due to complementarities, since

not all inventors can simultaneously receive their individual incremental value. By allowing

4 Pigouvian taxes (or subsidies) for externalities are one of the best-known applications of this wisdom. In the
work that introduces this concept, Pigou (1920: 161) uses patent laws as an example of a tool for ‘bringing
marginal trade net product and marginal social net product more closely together’.
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supra-competitive royalties in the former state, the marginal incentive in expectation over

different states moves closer to the marginal social contribution when the incentives are

considered in expectation over multiple possible outcomes.

This paper contributes to the analysis of how innovation should be incentivised in the

standardisation context. Themodel adds a preceding stage to analyses of the standardisation

process that begin after the technologies have been invented. In particular, the modelling

approach for the value of technologies in a standard is similar to Lerner and Tirole (2015), and

the competitive benchmark in this paper is consistent with their definition of a competitive

equilibrium. The probabilistic innovation process used in this paper is also used by Layne-

Farrar, Llobet, and Padilla (2014), who show that competitive royalties are not sufficient

to attract innovating firms to participate in standardisation efforts when the choice of

participation is endogenous. Gilbert and Katz (2011) study a similar question of dividing

the value of multiple perfectly complementary technologies among inventors. Their paper

uses a dynamic model in which multiple inventors compete to discover each component

sequentially. In contrast to their work, my model does not feature a ‘winner-takes-all’ race

to discover a technology, but allows each invention to potentially have complementary as

well as substitute innovations.

More broadly, other papers study different aspects of innovation incentives under FRAND

licensing commitments. Ganglmair, Froeb, and Werden (2012) study the enforcement of

FRAND commitments and argue that damage remedies against SEP holders suboptimally

restrict innovation, while Dewatripont and Legros (2013) show that FRAND licensing

requirements may lead to firms claiming SEPs that are not really ‘essential’ to the standard.

The structure of innovation efforts in this paper can also be compared to the standard

problem of incentives for teams, in which multiple agents contribute to a common goal.

The model of multiple innovators contributing to the expected social welfare corresponds

to the team incentive model of Holmström (1982), with the key difference being that,

instead of contracting solely on the joint outcome, the principal can also contract upon

individual signals (i.e. research outcomes), even though actions of individual agents remain

non-contractible.

The rest of the paper is structured as follows. To set the stage, Section 2 describes a

simplified example that highlights the intuition presented in this paper. Section 3 describes

the model set-up for the rest of the paper, while Section 4 explains the result that the

competitive benchmark is not necessarily optimal. Section 5 concludes with some caveats

on how the results from this model should be interpreted.
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2 A simple example

This section provides an intuitive example to the results in this paper, although the following

model is not strictly a special case of the model described in Section 3.

Example 1. Suppose there is a project that has a value 𝑣 > 0 if it is achieved. This project

can be achieved in two ways: (i) it has two complementary technologies, 1 and 2, which may

be invented by the corresponding firms 1 and 2, or, (ii) a free alternative, called technology 0,

is found.

Technology 0 is found at no cost with an exogenous probability 𝑞. For each firm 𝑖 ∈ {1, 2},
its attempt to invent technology 𝑖 succeeds with probability 𝑥𝑖 if it invests 𝑥𝑎𝑖 /𝑎, with 𝑎 > 2.

The firms choose the research efforts 𝑥1 and 𝑥2 simultaneously. After the efforts are

chosen, the outcomes of three probabilistic processes are realised. These processes are

independent. Figure 1 summarises the timing within this model, including the hypothetical

stages for a welfare-maximising principal and the competitive benchmark that are explained

below.

Given this set-up, the expected social surplus given the research efforts 𝑥1 and 𝑥2 is

[𝑞 + (1 − 𝑞)𝑥1𝑥2]𝑣 −
𝑥𝑎1
𝑎

−
𝑥𝑎2
𝑎
. (1)

Assume that the values of 𝑞 and 𝑣 are such that the research efforts that maximise the

expected surplus are interior in [0, 1]2. From the first-order conditions, the (unconstrained)

surplus-maximising research efforts are

𝑥1 = 𝑥2 = [(1 − 𝑞)𝑣]1/(𝑎−2).

Now, consider a principal who cannot directly choose or contract on the research efforts,

but can design a revenue scheme for firms based on the realised outcomes. The rule is

announced before the firms make their decisions. For simplicity, suppose that the principal

must choose a scheme of the following form: each firm 𝑖 receives 𝜌 if technologies 1 and 2

are invented while technology 0 is not, and each firm 𝑖 receives 𝜌 if technologies 0, 1, and 2,

are all invented. If at least one of firms 1 and 2 does not succeed, then neither firm receives

5
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The principal de-

cides the revenue

scheme.

The firms decide

the research ef-

forts.

Nature determines

the innovation

outcome.

Firms set price for

an implementer.

Principal’s problem Competitive benchmark

Figure 1: The timing of the model. The stages in the dashed boxes are only relevant to their respective cases.

anything.5 Under such a scheme, firm 𝑖’s expected profit is

[𝑞𝜌 + (1 − 𝑞)𝜌]𝑥1𝑥2 −
𝑥𝑎𝑖
𝑎
,

and the non-zero symmetric Nash equilibrium of the investment game is

𝑥1 = 𝑥2 = [𝑞𝜌 + (1 − 𝑞)𝜌]1/(𝑎−2). (2)

The principal chooses a revenue scheme of 𝜌 and 𝜌 to maximise the expected surplus (1),

given that the firms invest according to the equilibrium (2). In addition, the principal is

restricted by the constraints that the total revenues given to the firms must not exceed the

value 𝑣 in any state, that is, 𝜌, 𝜌 ≤ 𝑣/2. If 𝑞 ≥ 1/2, then setting 𝜌 = 𝑣/2 and 𝜌 = (𝑣/2)(1 −
𝑞)/𝑞 aligns the equilibrium research effort with the unconstrained surplus-maximising effort

[(1 − 𝑞)𝑣]1/(𝑎−2). On the other hand, if 𝑞 < 1/2, then the expected surplus is maximised,

given the constraints, at 𝜌 = 𝜌 = 𝑣/2, which induces the research effort 𝑣/2 that is smaller

than the unconstrained optimal efforts.

The competitive benchmark is defined in the following way. Suppose the revenues that

firms receive are not set a priori by a principal, but are instead determined in a Bertrand-like

process after the invention outcomes are realised. Firms 1 and 2 simultaneously propose a

price for their technology to an implementer, who then decides whether to pay the proposed

prices for the firms’ technologies. The competitive benchmark is the price in the symmetric

equilibrium in which the implementer is willing to buy from the firms. (This requirement

rules out coordination failures.) The symmetric equilibrium price for each of technologies 1

and 2 is 𝑣/2 if both of them are successfully invented and technology 0 is not found (i.e.

𝜌 = 𝑣/2). In any other outcomes, the price for technologies 1 and 2, if they exist, must be

zero (including 𝜌 = 0). Recall that in the optimal scheme discussed above, firms are given

5 The imposed structure rules out asymmetric transfers and transfers when only one firm succeeds. Allowing
such transfers does not change the main intuition in this example that the optimal scheme prescribes
greater transfers than the competitive benchmark.

6

Electronic copy available at: https://ssrn.com/abstract=3749905



positive revenues even when technology 0 is found (𝜌 > 0) in contrast to the zero revenue

prescribed by the competitive benchmark. This example then shows that the competitive

benchmark can still be improved upon.

To understand the intuition, consider the outcome in which the firms’ technologies are

invented but technology 0 is not. The incremental contribution that each firm brings to

the table with its technology is the full value 𝑣, since the project is worthless without it.

However, with the budget constraint of 𝑣, the principal cannot give the full value to both

firms, and the best thing under the constraint is to give 𝑣/2 to the firms if they both succeed.

If technology 0 is also found, then the firms’ technologies do not add any value, and in

isolation it makes sense that the firms cannot command a positive revenue in this case.

However, by allowing a positive revenue to firms in this outcome, the expected revenue of

a firm given their incremental contribution ‘offsets’ what the principal cannot give in the

other outcome.

In this example, the probability 𝑞 that the free substitute exists is completely exogenous.

The effect illustrated by this example can also be shownwhen all technologies are potentially

invented by self-interested firms, which is the case I consider in the following sections.

3 Model

Consider the following stylised model of innovation, in which multiple technologies can be

invented. Let 𝑁 = {1, … , 𝑛} denote the set of risk-neutral firms; each firm 𝑖 ∈ 𝑁 is endowed

with one idea for a technology. Firm 𝑖’s attempt to invent its technology succeeds with

probability 𝑥𝑖 if it invests 𝑐(𝑥𝑖), where 𝑐 is an increasing and convex function with 𝑐(0) = 0,
𝑐′(0) = 0, and lim𝑥𝑖→1 = ∞. The research processes of all firms are simultaneous and

independent. Let 𝑥 be the vector of research efforts (𝑥1, … , 𝑥𝑛).
As each technology may be independently invented, there are 2𝑛 possible states of the

world. Each state is characterised by the set of available technologies. Therefore, I will also

refer to the state of the world in which the set of successfully invented technologies is 𝑆 as

state 𝑆. The set of all possible states is the power set of 𝑁, denoted 𝒫 (𝑁).
If we have a set 𝑆 of available technologies, then the technologies jointly create a value

of 𝑣(𝑆). Assume that 𝑣 is normalised such that 𝑣(∅) = 0 and 𝑣 is monotonic, that is, for any

sets 𝑆 and 𝑇, we have 𝑣(𝑆) ≤ 𝑣(𝑇 ) if 𝑆 ⊆ 𝑇.6 Let ̄𝑣(𝑥) be the expected value of 𝑣(𝑆) given the

6 It is conceivable that including more technologies into a standard may reduce the value of the standard,
meaning that the value function of the standard is not monotonic (see Lerner and Tirole 2015). Since
the standard selection process is not modelled in this paper, the monotonicity of 𝑣(𝑆) can be justified by
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research efforts 𝑥, that is
̄𝑣(𝑥) = ∑

𝑆∈𝒫 (𝑁 )
Pr (𝑆 | 𝑥) 𝑣(𝑆),

where

Pr (𝑆 | 𝑥) = ∑
𝑆∈𝒫 (𝑁 )

(∏
𝑗∈𝑆

𝑥𝑗 ∏
𝑘∈𝑁⧵𝑆

(1 − 𝑥𝑘))

is the probability that state 𝑆 is realised given the research efforts 𝑥. The expected social

surplus 𝑤(𝑥) can then be written as

𝑤(𝑥) = ̄𝑣(𝑥) −∑
𝑖∈𝑁

𝑐(𝑥𝑖).

As the ‘first-best’ benchmark, let 𝑥∗ be the research efforts that maximise 𝑤(𝑥). For

the rest of this paper, I assume that 𝑥∗ is the unique local and global maximum and it is

interior in [0, 1]𝑛. In most cases, it is plausible that research investment does not have an

identifiable upper bound and its nature resembles more closely the interior case. With

this assumption, the first-best research efforts 𝑥∗ can be characterised by the first-order

conditions
𝜕 ̄𝑣(𝑥∗)
𝜕 𝑥𝑖

= 𝑐′(𝑥∗𝑖 ) for all 𝑖 ∈ 𝑁 , (3)

where
𝜕 ̄𝑣(𝑥)
𝜕 𝑥𝑖

= ∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥−𝑖) [𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖})]

and Pr (𝑆 | 𝑥−𝑖) is the probability that state 𝑆 is realised given that technology 𝑖 exists,

Pr (𝑆 | 𝑥−𝑖) = ∑
𝑆∈𝒫 (𝑁 )

( ∏
𝑗∈𝑆⧵{𝑖}

𝑥𝑗 ∏
𝑘∈𝑁⧵𝑆

(1 − 𝑥𝑘)) . (4)

The difference 𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖}) is the incremental contribution of technology 𝑖 in state 𝑆
and 𝜕 ̄𝑣(𝑥)/𝜕𝑥𝑖 is the expected incremental contribution.

Throughout this paper, the research efforts 𝑥 are assumed to be non-contractible, but it

is possible to specify how much each firm is paid in a particular state of the world. Let 𝑟𝑖(𝑆)
denote the revenue that firm 𝑖 receives in state 𝑆. A full schedule of revenues for all 𝑖 and 𝑆
is referred to as a revenue scheme. This revenue scheme may represent several things: it

may be a commonly known pre-determined rule (for example, an established law or SSO

policy on what constitutes FRAND terms), or it may be the result of backward induction

interpreting 𝑣(𝑆) as the value of the best standard that can be chosen in state 𝑆.
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from a licensing game that follows.

The firms’ research can then be defined as a strategic game of 𝑛 players, in which each

player 𝑖 chooses its research effort 𝑥𝑖 to maximise their expected profit

∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥) 𝑟𝑖(𝑆) − 𝑐(𝑥𝑖).

Assume that if the game has multiple Nash equilibria, the equilibrium that produces the

highest welfare 𝑤(𝑥) is chosen. With 𝑟𝑖(𝑆) ≥ 0 and the assumptions on 𝑐, the investment

equilibrium �̂� satisfies the first-order condition

∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | �̂�−𝑖) [𝑟𝑖(𝑆) − 𝑟𝑖(𝑆 ⧵ {𝑖})] = 𝑐′(�̂�𝑖) for all 𝑖 ∈ 𝑁

with Pr (𝑆 | �̂�−𝑖) defined by (4). This condition shows that any revenue schemes that feature

the same value of the difference 𝑟𝑖(𝑆) − 𝑟𝑖(𝑆 ⧵ {𝑖}) for all 𝑖 and 𝑆 induce identical equilibrium

research efforts. For the rest of the paper, I will restrict attention to revenue schemes

that only pay the firms when they succeed, that is, 𝑟𝑖(𝑆) = 0 if 𝑖 ∉ 𝑆. If the revenue 𝑟𝑖(𝑆)
equals the incremental value 𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖}), then the equilibrium efforts coincide with

the first-best efforts (3).

To simplify the exposition further, let ̄𝑟𝑖 denote the expected revenue that firm 𝑖 receives
if its research succeeds, that is, for given research efforts 𝑥,

̄𝑟𝑖 = ∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥−𝑖) 𝑟𝑖(𝑆), (5)

and let ̄𝑟 denote the vector ( ̄𝑟1, … , ̄𝑟𝑛).7 Firm 𝑖’s expected profit can then be written as

𝑥𝑖 ̄𝑟𝑖 − 𝑐(𝑥𝑖) and the Nash equilibrium of the investment game can be defined as research

efforts �̂� that satisfy

̄𝑟𝑖 = 𝑐′(�̂�𝑖) for all 𝑖 ∈ 𝑁 . (6)

The effort �̂�𝑖 that satisfies (6) is unique for each ̄𝑟𝑖 and increasing in ̄𝑟𝑖.
Consider a hypothetical principal who sets a revenue scheme to maximise the expected

social surplus 𝑤(𝑥), given that firms invest according to the investment equilibrium. In

Section 4.1, I consider a simpler problem in which the principal chooses an expected revenue

vector ̄𝑟 such that, with the equilibrium efforts �̂� defined by (6), the total expected revenues

7 This formulation of ̄𝑟𝑖 that sums over 𝑆 ∈ 𝒫 (𝑁 ) is possible given that 𝑟𝑖(𝑆) = 0 for 𝑖 ∉ 𝑆.
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given to all firms do not exceed the expected value:

∑
𝑖∈𝑁

�̂�𝑖 ̄𝑟𝑖 ≤ ̄𝑣(�̂�). (7)

This is a standard contracting problem with one budget constraint.8 The outcome of

this constrained optimisation problem serves as the upper boundary of the second-best

benchmark. After that, I will define a competitive benchmark within this framework, and

evaluate its performance in comparison to the second-best outcome.

The constraint (7) is formulated in expected terms and does not restrict the revenues

given to innovators in a particular state. In Section 4.3, I consider the problem in which the

total revenues given to the firms must not exceed the value in each state, that is,

∑
𝑖∈𝑆

𝑟𝑖(𝑆) ≤ 𝑣(𝑆) for all 𝑆 ∈ 𝒫 (𝑁 ). (8)

The competitive benchmark is again compared to the second-best outcome of this con-

strained optimisation problem.

4 Analysis

4.1 Optimal revenue scheme under the constraint in expected terms

Consider the problem of choosing the vector of expected revenues ̄𝑟 to maximise the

expected social surplus 𝑤(𝑥), given the equilibrium investment effort (6) and the budget

constraint (7). Proposition 1 below describes a condition for the solution of this constrained

maximisation problem.

Proposition 1. Under an aggregate budget constraint, the optimal expected revenue scheme
satisfies

𝜕 ̄𝑣(𝑥)/𝜕𝑥𝑖 − ̄𝑟𝑖
̄𝑟𝑖

=
𝑚
𝑒𝑖

for all 𝑖 ∈ 𝑁 (9)

with some constant 𝑚 ≥ 0 and

𝑒𝑖 =
𝑐′(𝑥𝑖)
𝑥𝑖𝑐″(𝑥𝑖)

.

8 The structure in this model is similar to that of Holmström (1982). His model can be characterised as follows:
given a vector of agents’ actions 𝑥, a joint value of 𝑤(𝑥) is created. A principal specifies a sharing rule 𝑠𝑖(𝑤)
such that ∑𝑖∈𝑁 𝑠𝑖(𝑤) ≤ 𝑤 for all 𝑤. Agent 𝑖’s pay-off given the action profile 𝑥 is 𝑠𝑖(𝑤(𝑥)) − 𝑐(𝑥𝑖). Comparing
the constraints with 𝑠𝑖(𝑤(𝑥)) and 𝑥𝑖 ̄𝑟𝑖, 𝑠𝑖(𝑤(𝑥)) is not necessarily linear in 𝑥, while 𝑥𝑖 ̄𝑟𝑖 is.
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Proof. For a given value of 𝑥𝑖, the revenue ̄𝑟𝑖 is uniquely defined in the investment equi-

librium condition (6). Therefore, we can consider the equivalent maximisation problem

of

max
�̂�

𝑤(�̂�)

subject to ∑
𝑖∈𝑁

�̂�𝑖𝑐′(�̂�𝑖) ≤ ̄𝑣(�̂�).

The Kuhn–Tucker necessary conditions imply that the solution to this maximisation prob-

lem satisfies
𝜕 ̄𝑣(𝑥)
𝜕 𝑥𝑖

− 𝑐′(𝑥𝑖) + 𝜆 (
𝜕 ̄𝑣(𝑥)
𝜕 𝑥𝑖

− 𝑐′(𝑥𝑖) − 𝑥𝑖𝑐″(𝑥𝑖)) = 0 (10)

for all 𝑖 ∈ 𝑁, and the complementary slackness condition

𝜆 (∑
𝑖∈𝑁

𝑥𝑖𝑐′(𝑥𝑖) − ̄𝑣(𝑥)) = 0,

with 𝜆 ≥ 0 being the Lagrange multiplier for the budget constraint. If the first-best

efforts 𝑥∗ are not feasible under this budget constraint, then in the solution we have 𝜆 > 0
and 𝜕 ̄𝑣(𝑥)/𝜕𝑥𝑖 − 𝑐′(𝑥𝑖) > 0. Rearranging equation (10) yields

𝜕 ̄𝑣(𝑥)/𝜕𝑥𝑖 − 𝑐′(𝑥𝑖)
𝑐′(𝑥𝑖)

=
𝜆

1 + 𝜆
⋅
𝑥𝑖𝑐″(𝑥𝑖)
𝑐′(𝑥𝑖)

.

Letting 𝑚 = 𝜆/(1 + 𝜆) and 𝑐′(𝑥𝑖) = ̄𝑟𝑖 we arrive at equation (9).

If the first-best efforts defined by equation (3) are feasible, then 𝜕 ̄𝑣(𝑥)/𝜕𝑥𝑖 − 𝑐′(𝑥𝑖) = 0
and equation (9) holds with 𝑚 = 0.

The result from this maximisation problem is analogous to the Ramsey pricing formula,

which in the simplest case is usually presented with a monopolist who supplies 𝑛 inde-

pendent goods (Baumol and Bradford 1970). In such a case, the Ramsey pricing formula

for good 𝑖, determining the deviation from the first-best marginal-cost pricing, is given

by (𝑝𝑖 − 𝑚𝑐𝑖)/𝑝𝑖 = 𝜇/𝜀𝑖, where 𝑝𝑖 denotes good 𝑖’s price, 𝑚𝑐𝑖 its marginal cost, 𝜀𝑖 its price
elasticity of demand, and 𝜇 a constant that is identical for all 𝑖. Equation (9) is the flip

side of this formula with a monopsonist and 𝑛 suppliers of research efforts. For all firms,

the deviation of their marginal revenues ̄𝑟𝑖 from their marginal contributions 𝜕 ̄𝑣(𝑥)/𝜕𝑥𝑖 is
inversely proportional to the ‘elasticity’ of effort, given by 𝑒𝑖 in equation (9). The elasticity 𝑒𝑖
measures the percentage change in firm 𝑖’s effort in response to a change in the expected

revenue ̄𝑟𝑖.
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4.2 Competitive benchmark

I will now define the competitive benchmark within this framework. Suppose that instead

of a principal’s decision, the firms engage in the following Bertrand-like process with

an implementer after the invention stage is resolved and state 𝑆 is realised. Each firm

with a successful invention (that is, each 𝑖 ∈ 𝑆) simultaneously proposes a price 𝑟𝑖(𝑆) to
a representative implementer, who can choose from which firms to buy, if at all. The

implementer’s objective is to maximise the net value

𝑣(𝐵) −∑
𝑖∈𝐵

𝑟𝑖(𝑆)

where 𝐵 ∈ 𝒫 (𝑆) is the implementer’s chosen set of technologies.

A competitive benchmark for state 𝑆 is defined as a price vector of 𝑟 𝑐𝑖 (𝑆) that is part of
a strategy profile in this pricing game in which the implementer buys from all firms in 𝑆.
This notion of competitive benchmark is consistent with the definition of Lerner and Tirole

(2015).9

The following lemma describes a necessary condition for the competitive benchmark,

especially in relation to the incremental value concept. It encapsulates the idea that, in

the hypothetical pre-standardisation competition, the price that a firm can demand is the

incremental value of its technology (Swanson and Baumol 2005). One point that has been

less explicitly emphasised in the discussion is that the incremental value rule must be

applied jointly for any group of technologies as well. This means the competitive price

may be strictly less than the individual incremental value 𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖}).

Lemma 1. In a competitive benchmark for any state 𝑆, the firms’ prices 𝑟 𝑐𝑖 (𝑆) must satisfy, for
any subset 𝑇 ∈ 𝒫 (𝑆),

∑
𝑖∈𝑇

𝑟 𝑐𝑖 (𝑆) ≤ 𝑣(𝑆) − 𝑣(𝑆 ⧵ 𝑇 ). (11)

Proof. In each state 𝑆, the consumer chooses to buy from all firms in 𝑆 only if, for any subset

𝐵 ∈ 𝒫 (𝑆),
𝑣(𝑆) −∑

𝑖∈𝑆
𝑟 𝑐𝑖 (𝑆) ≥ 𝑣(𝐵) −∑

𝑖∈𝐵
𝑟 𝑐𝑖 (𝑆). (12)

9 This condition rules out equilibria with coordination failure, in which firmswith complementary technologies
both choose too high prices. Alternatively, Lerner and Tirole (2015) impose that the competitive prices of
technologies not bought by the implementer must be zero.
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Suppose there exists a subset 𝑇 ⊆ 𝑆 such that ∑𝑖∈𝑇 𝑟
𝑐
𝑖 (𝑆) > 𝑣(𝑆) − 𝑣(𝑆 ⧵ 𝑇 ), then

[𝑣(𝑆) −∑
𝑖∈𝑆

𝑟 𝑐𝑖 (𝑆)] − [𝑣(𝑆 ⧵ 𝑇 ) −∑
𝑖∈𝑆⧵𝑇

𝑟 𝑐𝑖 (𝑆)] = 𝑣(𝑆) − 𝑣(𝑆 ⧵ 𝑇 ) −∑
𝑖∈𝑇

𝑟 𝑐𝑖 (𝑆) < 0,

which means the buyer would prefer to buy only from firms in 𝑆 ⧵ 𝑇. Thus, inequality (12)

is true only if inequality (11) is true.

Inequality (11) defines the incremental value pricing rule, for each individual technology

as well as for a group of technologies in state 𝑆. For example, if a technology 𝑖 has a perfect

substitute in state 𝑆, then the incremental value of 𝑖, 𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖}), is zero, which is its

competitive price according to Lemma 1.

The competitive benchmark is not necessarily unique within this model. Given the unit

demand, there are cases in which different price vectors can constitute the competitive

benchmark as defined. For example, consider 𝑣({1}) = 𝑣({2}) = 0 and 𝑣({1, 2}) = 𝑣. Then,
any prices such that 𝑟 𝑐1({1, 2})+𝑟 𝑐2({1, 2}) = 𝑣 satisfy the definition of competitive benchmark.

The results related to the competitive benchmark in this paper rely only on the necessary

condition (11).

Recall that the first-best efforts are induced if each firm is paid its individual incremental

value in all states. Since the competitive benchmark revenue in a certain state may be

smaller than the individual incremental value, while the reverse is never possible, the

competitive benchmark in such a case is not sufficient to induce the first-best efforts.

Given the following definition of complementarity, it can be shown that the competitive

benchmark is not first-best if some technologies are complementary.

Definition 1. Technologies 𝑖 and 𝑗 are complements if, for all 𝑆 ∈ 𝒫 (𝑁 ),

[𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖})] + [𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑗})] ≥ 𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖, 𝑗}) (13)

with strict inequality (>) for some 𝑆.

Proposition 2. If there exists a pair of technologies that are complements, then the first-best
research efforts cannot be implemented by a competitive benchmark.

Proof. The revenue scheme that induces the first-best efforts 𝑥∗ must satisfy

𝑥∗𝑖 ̄𝑟𝑖 = 𝑥∗𝑖
𝜕 ̄𝑣(𝑥∗)
𝜕 𝑥𝑖

for all 𝑖 ∈ 𝑁

= ∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥∗) [𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖})].
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Suppose firms 𝑖 and 𝑗 are complements. From the competitive benchmark condition (11)

and the definition of complementarity (13), we have, for any state 𝑆,

𝑟 𝑐𝑖 (𝑆) + 𝑟 𝑐𝑗 (𝑆) ≤ 𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖, 𝑗})

≤ [𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖})] + [𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑗})].

As inequality (13) is strict for some 𝑆 per definition, multiplying both sides by Pr (𝑆 | 𝑥∗)
and sum over all 𝑆 yields, with ̄𝑟 𝑐𝑖 defined analogous to (5),

𝑥𝑖 ̄𝑟 𝑐𝑖 + 𝑥𝑗 ̄𝑟 𝑐𝑗 < ∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥∗) ([𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖})] + [𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑗})]) .

Thus, the competitive benchmark does not implement the first-best efforts.

The intuition of Proposition 2 is as follows. Since some technologies are complementary,

then we cannot reward each firm the whole individual incremental value 𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖}).
This makes it impossible for the competitive benchmark to induce the first-best efforts.

However, even if the competitive benchmark cannot attain the first best, it may still

implements the second-best research efforts. The following proposition shows that this is

not necessarily the case. If the competitive benchmark is not on the boundary of the feasible

set, that is, there are values left on the table that we can give to firms, then increasing the

revenues over the competitive benchmark can improve welfare.

Proposition 3. If first-best efforts are not feasible and the expected revenue from a competitive
benchmark is interior in the feasible region defined by the constraint (7), then the benchmark
does not implement the second-best research efforts.

There exists a case in which welfare can be improved by allowing supra-competitive revenue.

Proof. From the assumption that there is a unique local and global maximum in [0, 1]𝑛,
if the first-best efforts are not in the feasible set, then there is no local maximum in the

interior of the feasible set. Since a maximum must exist in the compact feasible set, the

maximum (or maxima) must be located on the boundary of the set.

If the competitive benchmark corresponds to an interior point, it must not induce welfare-

maximising efforts in the feasible set, i.e. it does not implement the second-best research

efforts.

Let �̂� 𝑐 denote the equilibrium efforts in the competitive benchmark. From condition (11)

14

Electronic copy available at: https://ssrn.com/abstract=3749905



and
𝜕 ̄𝑣(�̂� 𝑐)
𝜕 𝑥𝑖

= ∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 || �̂� 𝑐−𝑖) [𝑣(𝑆) − 𝑣(𝑆 ⧵ {𝑖})]

it follows that, given �̂� 𝑐−𝑖,
𝜕 ̄𝑣(�̂� 𝑐)
𝜕 𝑥𝑖

≥ ̄𝑟 𝑐𝑖 = 𝑐(�̂� 𝑐𝑖 ).

Since the competitive benchmark is interior and is not a local maximum, the inequality

must be strict for some 𝑖 ∈ 𝑁, which means the marginal welfare is increasing in some 𝑥𝑖 at
the benchmark.

With Proposition 2 and Proposition 3, we see that with complementary technologies, it is

possible that there is room to improve welfare without breaking the budget. This happens

if in some states the full value is not paid out in the competitive benchmark. The following

numerical example uses a set-up similar to Section 2, but instead of an exogenous free

substitute technology, there is another pair of complementary technologies that can be

chosen. The example shows that the competitive benchmark is interior in the feasible set

and induces welfare that is lower than the second best.

Example 2. Suppose 𝑛 = 4, and the value function is defined as follows:

𝑣(𝑆) = {
10 if {1, 2} ⊆ 𝑆 or {3, 4} ⊆ 𝑆

0 otherwise

The cost function is 𝑐(𝑥𝑖) = 𝑥2𝑖 /(1 − 𝑥𝑖).
Under this setting, the welfare 𝑤(𝑥) is given by

10(𝑥1𝑥2 + 𝑥3𝑥4 − 𝑥1𝑥2𝑥3𝑥4) −∑
𝑖∈𝑁

𝑥2𝑖
1 − 𝑥𝑖

The first-best efforts that maximise 𝑤(𝑥) are 𝑥∗𝑖 = 0.545 for all 𝑖. However, they are not

feasible under the budget constraint (7). The effort level 𝑥∗𝑖 = 0.545 requires ̄𝑟𝑖 = 𝑐′(0.545) =
3.831; this means ∑𝑥∗𝑖 ̄𝑟𝑖 = 8.353 exceeds the budget ̄𝑣(𝑥∗) = 5.059.

The second-best efforts, maximising 𝑤(𝑥) under constraint (7), are 𝑥𝑖 = 0.411, which can

be induced by ̄𝑟𝑖 = 𝑐′(0.411) = 1.881. The second-best welfare is 𝑤(𝑥) = 1.945.
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The symmetric competitive benchmark in this case is

𝑟 𝑐1(𝑆) = {
5 if {1, 2} ⊆ 𝑆 and {3, 4} ⊈ 𝑆

0 otherwise

and analogously for other firms. The objective of firm 1 is to maximise the expected profit

max
𝑥1

5𝑥1𝑥2(1 − 𝑥3𝑥4) −
𝑥21

1 − 𝑥1

and the first-order condition is

5𝑥2(1 − 𝑥3𝑥4) −
𝑥1(2 − 𝑥1)
(1 − 𝑥1)2

= 0.

The symmetric equilibrium given the competitive benchmark is 𝑥 𝑐𝑖 = 0.384 for all 𝑖. This
equilibrium is interior, as ̄𝑟𝑖 = 𝑐′(0.384) = 1.638 yields ∑𝑥𝑖 ̄𝑟𝑖 = 2.517, which is smaller than

̄𝑣(𝑥) = 2.735. The welfare induced by the equilibrium is 𝑤(𝑥 𝑐) = 1.776.

4.3 State-contingent budget constraints

In previous sections, the problem with constraint (7) is formulated in expected terms. If we

consider the revenues given to firms to be royalties from implementers, then this constraint

is too lax as it allows the principal to transfer values across different states. If the principal

is only allowed to distribute the available value within each state, the revenue scheme must

instead satisfy the state-based budget constraints

∑
𝑖∈𝑆

𝑟𝑖(𝑆) ≤ 𝑣(𝑆) for all 𝑆 ∈ 𝒫 (𝑁 ). (8)

These constraints are stronger than the previous constraint (7); a revenue scheme that

satisfies (8) also satisfies (7), but the reverse is not necessarily true.

With 2𝑛 budget constraints (8) formulated with 𝑟𝑖(𝑆), the problem becomes considerably

more complicated. The following results show that the result on the competitive benchmark

established in the previous section still applies in this case, namely if first-best efforts are not

feasible and the benchmark is interior in the feasible set defined by (8), then the benchmark

does not implement the second-best efforts under these constraints. The previous analysis

is based on choosing the expected revenues ̄𝑟 to maximise the surplus 𝑤(𝑥), subject to
constraint (7) on ̄𝑟. Lemma 2 restates the constraints (8) into a set of constraints on ̄𝑟. This
means the problem of choosing a revenue scheme that satisfies (8) can still be reduced to
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that of choosing the expected revenues ̄𝑟 subject to the following set of constraints (14),

without specifying the (not necessarily unique) implementation of the revenue scheme.

Lemma 2. Given the chosen research efforts 𝑥 and expected revenues ̄𝑟, there exists a revenue
scheme that implements ̄𝑟 according to (5) and satisfies the constraints (8) for all states 𝑆, if
and only if ̄𝑟 satisfies, for all states 𝑆,

∑
𝑖∈𝑆

𝑥𝑖 ̄𝑟𝑖 ≤ ∑
𝑇∈𝒬(𝑆)

Pr (𝑇 | 𝑥) 𝑣(𝑇 ), (14)

where 𝒬(𝑆) = {𝑇 ∈ 𝒫 (𝑁 ) | 𝑆 ∩ 𝑇 ≠ ∅} is the set of states that has at least one of the firms in
set 𝑆.

Proof. First, I will show that a revenue scheme that represents ̄𝑟 and satisfies the state-

based budget constraints (8) exists only if ̄𝑟 satisfies (14). Consider a revenue scheme that

represents ̄𝑟 and satisfies (8). Using the definition of ̄𝑟𝑖 from (5),

∑
𝑖∈𝑆

𝑥𝑖 ̄𝑟𝑖 = ∑
𝑖∈𝑆

[𝑥𝑖∑
𝑇∈𝒫 (𝑁 )

Pr (𝑇 | 𝑥−𝑖) 𝑟𝑖(𝑇 )] .

Note that 𝑥𝑖 Pr (𝑇 | 𝑥−𝑖) = Pr (𝑇 | 𝑥) . Since it is imposed that 𝑟𝑖(𝑇 ) = 0 if 𝑖 ∉ 𝑇, summing

over all states equals summing over states that intersect with 𝑆. Thus,

∑
𝑖∈𝑆

𝑥𝑖 ̄𝑟𝑖 = ∑
𝑖∈𝑆

∑
𝑇∈𝒬(𝑆)

Pr (𝑇 | 𝑥) 𝑟𝑖(𝑇 )

= ∑
𝑇∈𝒬(𝑆)

[Pr (𝑇 | 𝑥) ∑
𝑖∈𝑆

𝑟𝑖(𝑇 )] .

With 𝑟𝑖(𝑇 ) = 0 if 𝑖 ∉ 𝑇, it must be that ∑𝑖∈𝑆 𝑟𝑖(𝑇 ) ≤ ∑𝑖∈𝑇 𝑟𝑖(𝑇 ). If (8) holds, it follows that

∑
𝑖∈𝑆

𝑥𝑖 ̄𝑟𝑖 ≤ ∑
𝑇∈𝒬(𝑆)

Pr (𝑇 | 𝑥) 𝑣(𝑇 ).

Thus, we have that a scheme represents ̄𝑟 and satisfies (8) only if ̄𝑟 satisfies (14).
Now, I will show that the revenue scheme exists if ̄𝑟 satisfies (14). The existence of a

revenue scheme that represents ̄𝑟 according to (5) and satisfies (8) for all states means the
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minimum in the following constrained minimisation problem is zero.

min
⟨𝑟𝑖(𝑆)⟩

∑
𝑖∈𝑁

(𝑥𝑖 ̄𝑟𝑖 −∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥) 𝑟𝑖(𝑆))
2

subject to (8) for all 𝑆

and 𝑟𝑖(𝑆) ≥ 0 for all 𝑖 and 𝑆

The following steps show that the constrained minimum is zero, that is a feasible revenue

scheme that represents ̄𝑟 exists, if ̄𝑟 satisfies (14).
Consider the Kuhn–Tucker necessary conditions

2 Pr (𝑆 | 𝑥) (𝑥𝑖 ̄𝑟𝑖 −∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥) 𝑟𝑖(𝑆)) + 𝜆𝑖𝑆 = 𝜇𝑆 for all 𝑖 and 𝑆

𝜇𝑆 (∑
𝑖∈𝑆

𝑟𝑖(𝑆) − 𝑣(𝑆)) = 0 for all 𝑆

𝜆𝑖𝑆𝑟𝑖(𝑆) = 0 for all 𝑖 and 𝑆

with the Kuhn–Tucker multipliers 𝜇𝑆 ≥ 0 for each constraint (8) and 𝜆𝑖𝑆 ≥ 0 for the

non-negativity constraint of each 𝑟𝑖(𝑆).
I will show by contradiction that if the constrained minimum is not zero then condi-

tion (14) is violated, thus the minimum is zero if ̄𝑟 satisfies (14). Suppose the constrained

minimum is strictly greater than zero and is attained at {𝑟0𝑖 (𝑠)}. There are two possibil-

ities for each 𝑖: either 𝑥𝑖 ̄𝑟𝑖 < ∑𝑆 Pr (𝑆 | 𝑥) 𝑟
0
𝑖 (𝑆) or 𝑥𝑖 ̄𝑟𝑖 > ∑𝑆 Pr (𝑆 | 𝑥) 𝑟

0
𝑖 (𝑆). The case of

𝑥𝑖 ̄𝑟𝑖 < ∑𝑆 Pr (𝑆 | 𝑥) 𝑟
0
𝑖 (𝑆) for any 𝑖 can be ruled out since the right-hand side can always be

lowered to zero.

Consider the case 𝑥𝑖 ̄𝑟𝑖 > ∑𝑆 Pr (𝑆 | 𝑥) 𝑟
0
𝑖 (𝑆) for some 𝑖 ∈ 𝑁. Let 𝐴 be the set of every such 𝑖,

that is,

𝐴 = {𝑖 ∈ 𝑁
||||
𝑥𝑖 ̄𝑟𝑖 > ∑

𝑆∈𝒫 (𝑁 )
Pr (𝑆 | 𝑥) 𝑟0𝑖 (𝑆)}.

From the necessary conditions, we have 𝜇𝑇 > 0 for every state 𝑇 such that 𝑇 ∩ 𝐴 ≠ ∅,
the constraint (8) for 𝑇 binds, and 𝑟0𝑖 (𝑇 ) = 0 for every 𝑖 ∉ 𝐴 (since 𝜆𝑖𝑇 > 0). Summing

∑𝑆 Pr (𝑆 | 𝑥) 𝑟
0
𝑗 (𝑆) over 𝑗 ∈ 𝐴 then gives

∑
𝑆∈𝒫 (𝑁 )

Pr (𝑆 | 𝑥) ∑
𝑗∈𝐴

𝑟0𝑗 (𝑆) = ∑
𝑇∈𝒬(𝐴)

Pr (𝑇 | 𝑥) 𝑣(𝑇 )
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and together with 𝑥𝑗 ̄𝑟𝑗 > ∑𝑆 Pr (𝑆 | 𝑥) 𝑟
0
𝑗 (𝑆) we have

∑
𝑗∈𝐴

𝑥𝑗 ̄𝑟𝑗 > ∑
𝑇∈𝒬(𝐴)

Pr (𝑇 | 𝑥) 𝑣(𝑇 )

which contradicts condition (14). Therefore, if ̄𝑟 satisfies (14), the minimum must be zero,

which means there exists a feasible revenue scheme that represents ̄𝑟.

Condition (14) says that for an arbitrary subset 𝑆 of firms, the sum of the expected

revenues ̄𝑟𝑖 given to them must not exceed the portion of the expected value ̄𝑣(𝑥) that comes

from states in which at least one firm from 𝑆 is present. When the values of 𝑥 and ̄𝑟 satisfy
the whole stack of such conditions, it is possible to find a revenue scheme that requires no

transfers across different states, as prescribed by (8).

With constraints defined by expected revenues, the problem is now in a form similar to the

problem considered in previous sections. A principal chooses expected revenues ̄𝑟, subject
to the constraints (14), to maximise the surplus 𝑤(𝑥) given the investment equilibrium (6).

Proposition 3 still directly applies in this case, with the constraint (7) replaced by the set

of constraints (14); the expected surplus from the competitive benchmark is not optimal,

neither in the first-best nor second-best senses, if some technologies are complementary

and the benchmark research efforts are interior in the feasible set defined by (14). The proof

of Proposition 3 applies to a compact feasible set, it holds for the feasible set defined by

these budget constraints.

While the result on the interiority survives, with more restrictive constraints the feasible

set under (14) is smaller than one under (7). It remains a question whether a competitive

benchmark that is interior under constraint (7) remains interior under (14). The following

lemma shows that a competitive benchmark that is interior in the feasible set defined by (7)

is also interior in the feasible set defined by (14).

Lemma 3. Given 𝑥 such that 𝑥𝑖 > 0 for all 𝑖, if the expected revenue from a competitive
benchmark is interior in the feasible region defined by the constraint (7), it is also interior in
the feasible region defined by the constraints (14).

Proof. Note that 𝑥𝑖 > 0 for all 𝑖 means Pr (𝑆 | 𝑥) > 0 for all 𝑆 ∈ 𝒫 (𝑁 ).
Consider a competitive benchmark 𝑟 𝑐𝑖 (𝑆) that is interior in the feasible region defined

by (7). The following steps show by contradiction that the expected revenues from a

competitive benchmark cannot be interior in the feasible region of (7) but not interior in

the feasible region of (14).
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From the definition of expected revenue, the competitive benchmark being interior under

constraint (7) means

∑
𝑖∈𝑁

∑
𝑇∈𝒫 (𝑁 )

Pr (𝑇 | 𝑥) 𝑟 𝑐𝑖 (𝑇 ) < ∑
𝑇∈𝒫 (𝑁 )

Pr (𝑇 | 𝑥) 𝑣(𝑇 ), (15)

while not being interior in (14) means, given that the competitive benchmark satisfies (11),

the inequality (14) holds with equality for some state 𝑆 ∈ 𝒫 (𝑁 ) such that 𝑆 ≠ 𝑁, that is

∑
𝑖∈𝑆

∑
𝑇∈𝒬(𝑆)

Pr (𝑇 | 𝑥) 𝑟 𝑐𝑖 (𝑇 ) = ∑
𝑇∈𝒬(𝑆)

Pr (𝑇 | 𝑥) 𝑣(𝑇 ). (16)

Given that 𝑟 𝑐𝑖 (𝑇 ) = 0 if 𝑖 ∉ 𝑆, (15) and (16) implies

∑
𝑗∈𝑁
𝑗∉𝑆

∑
𝑇∈𝒫 (𝑁 )
𝑇∉𝒬(𝑆)

Pr (𝑇 | 𝑥) 𝑟 𝑐𝑗 (𝑇 ) < ∑
𝑇∈𝒫 (𝑁 )
𝑇∉𝒬(𝑆)

Pr (𝑇 | 𝑥) 𝑣(𝑇 ).

This is true only if there exists a state 𝑌 ∈ 𝒫 (𝑁 ) ⧵ 𝒬(𝑆) such that

∑
𝑖∈𝑌

𝑟 𝑐𝑖 (𝑌 ) < 𝑣(𝑌 ),

which in turn can only be true if 𝑣(𝑌 ) > 0.
From Lemma 1, the competitive benchmark must satisfy ∑𝑖∈𝑆 𝑟

𝑐
𝑖 (𝑆) ≤ 𝑣(𝑆) for all 𝑆. With

𝑟 𝑐𝑖 (𝑇 ) = 0 if 𝑖 ∉ 𝑇, equation (16) is true only if

∑
𝑖∈𝑆

𝑟 𝑐𝑖 (𝑇 ) = 𝑣(𝑇 ) for all 𝑇 ∈ 𝒬(𝑆). (17)

That is, only firms in set 𝑆 can receive a positive revenue in any states in the set 𝒬(𝑆) and
the value in those states are fully distributed.

Now, consider any state 𝑌 ′ such that 𝑌 ⊆ 𝑌 ′ and 𝑌 ′ ∩ 𝑆 ≠ ∅. From Lemma 1, the

competitive benchmark satisfies, given that 𝑣(𝑌 ) > 0,

∑
𝑖∈𝑌 ′⧵𝑌

𝑟 𝑐𝑖 (𝑌 ′) ≤ 𝑣(𝑌 ′) − 𝑣(𝑌 )

< 𝑣(𝑌 ′).

But since 𝑌 ′ ∈ 𝒬(𝑆) by definition, this contradicts (17). Therefore, it is not possible that the

expected revenue from a competitive benchmark is interior under (7), but not under (14).

The idea of the proof is that for a constraint (14) to be binding for a set of firms 𝑆, the
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Table 1: The values of each side in inequality (14) at the second-best efforts 𝑥𝑖 = 0.411 from Example 3.

𝑆 ∑ 𝑥𝑖 ̄𝑟𝑖 ∑ Pr (𝑇 | 𝑥) 𝑣(𝑇 )

{1} 0.773 2.096
{1, 2} 1.545 2.505
{1, 3} 1.545 3.091
{1, 2, 3} 2.318 3.091
𝑁 3.091 3.091

values in all states that contain at least one firm in 𝑆 must be fully paid only to the firms

in set 𝑆. However, some of the states also include firms outside of set 𝑆 that have positive

values by themselves. Since the revenues in the competitive benchmark is limited by (joint)

incremental values, it cannot be the case that the full values in those states are rewarded to

only the firms in set 𝑆.
Lemma 3 means that while the extra state-based budget constraints considered in this

section potentially reduce the feasible set, they do not affect the main results on the

competitive benchmark described in Proposition 2 and Proposition 3. It is possible that,

with complementary technologies, the competitive benchmark does not lead to the welfare-

maximising research efforts under the condition that the incentives given to the firms can

only be from the values created by the available technologies in a particular state.

The following example revisits Example 2 and shows that the competitive benchmark is

still interior in the feasible set defined in this section and gives an example of a revenue

scheme that satisfies the state-contingent constraints (8).

Example 3. Consider again the four-firm model described in Example 2, with the value

function

𝑣(𝑆) = {
10 if {1, 2} ⊆ 𝑆 or {3, 4} ⊆ 𝑆

0 otherwise

and the cost function 𝑐(𝑥𝑖) = 𝑥2𝑖 /(1 − 𝑥𝑖).
The second-best efforts 𝑥𝑖 = 0.411 under the budget constraint in expected terms (7),

described in Example 2, are also the solution to the constrained maximisation problem with

the constraints (14). Table 1 shows that at 𝑥𝑖 = 0.411, the constraints (14) are not binding

except for the full set 𝑁. Therefore, the competitive benchmark, described in Example 2 is

still interior in the feasible set.

One possible revenue scheme that implements the second-best efforts and satisfies the
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constraints (8), that total revenues given to firms in each state 𝑆 do not exceed the available

value 𝑣(𝑆), is

𝑟1(𝑆) =
⎧⎪
⎨⎪
⎩

5 if {1, 2} ⊆ 𝑆 and {3, 4} ⊈ 𝑆

2.5 if 𝑆 = 𝑁

0 otherwise

and analogously for other firms. Compared to the competitive benchmark, this scheme

allows positive revenues to the firms when all technologies are invented, even though the

firms’ incremental contributions in that state is zero. Under this scheme, the expected

profit for firm 1 is

5𝑥1𝑥2(1 − 𝑥3𝑥4) + 2.5𝑥1𝑥2𝑥3𝑥4 −
𝑥21

1 − 𝑥1
and the equilibrium efforts are �̂�𝑖 = 0.411 for all 𝑖, which are the second-best efforts.

5 Concluding remarks

In this paper, I analyse innovation incentives in the context of standardisation. The model

introduces the research stage for multiple interacting inventions that precedes the stand-

ardisation process. It allows us to study how the value jointly created by the inventions

should optimally be appropriated by their inventors and how the competitive outcome,

as commonly defined, performs compared to the optimal rule. It shows that allowing

supra-competitive royalties for innovators may enhance economic welfare. Specifically, it

increases welfare by allowing innovators to reap more benefits when there are competing

substitutes that drive the royalties down in order to compensate the suboptimal incent-

ives that arise from complementarities. This result provides a caveat to the idea that the

pre-standardisation competitive outcome optimally aligns incentives with contributions.

The effects illustrated in this paper should be interpreted as one of many relevant factors

that affect the optimal innovation incentives. As technologies are assumed to generate

fixed welfare that is not affected by royalties, the model isolates the problem of insufficient

incentives for complementary technologies from the multiple marginalisation problem in

licensing (also known as royalty stacking), whereby the cumulative royalties demanded

by multiple patent holders exceed even the monopoly price (Shapiro 2001). Other known

economic phenomena may counteract the effects illustrated in this paper. For example, a

patent race in which multiple firms pursue the same technology can lead to over-investment

in research (Tandon 1983).
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